We offer raw data analysis services and do not ship physical kits.

Overview

Caffeine is one of the most popular psychostimulants legally consumed. Psychostimulants are substances that alter the mood and behavior of a person.

Caffeine is majorly present in coffee, tea, energy drinks, and chocolates.

Caffeine produces a small rise in dopamine levels in the brain. Dopamine is called the happy hormone. This is why you feel ‘happy/good’ when you drink a cup of coffee or tea.

While some individuals feel active, happy, and energetic after consuming caffeine, others feel anxious, uncomfortable, and stressed.

The difference lies in how your body metabolizes caffeine. Metabolism is the process of converting the food you eat into energy.

Caffeine Metabolism At Its Molecular Level - Getting Technical

When you consume caffeine, it enters the bloodstream through your mouth, throat, and stomach. The tissues that line your blood vessels, skin, and organs let caffeine pass through quite easily.

It takes just a few minutes for the caffeine to be fully absorbed by the human body. The peak levels of caffeine in the plasma are reached in just 30 minutes.

The liver breaks down caffeine with the help of certain enzymes.

Half-life is the amount of time it takes for caffeine to be reduced to half its initial levels. The half-life of caffeine is about 4 hours. The half-life can increase or decrease depending on both genetic and non-genetic factors.

Caffeine easily crosses the blood-brain barrier. The structure of caffeine is similar to that of adenosine. Adenosine helps the brain relax and sleep. Adenosine receptors usually absorb adenosine. Caffeine attaches itself to the adenosine receptors. This prevents adenosine from acting and keeps people active and fatigue-less.

People develop a better tolerance for caffeine when they consume it regularly.

Apart from developed tolerance, other factors like genetics, age, lifestyle, and diet also affect the rate of metabolism of caffeine.

How Does Genetics Influence Caffeine Metabolism

CYP1A2 gene

The CYP1A2 gene produces the CYP1A2 enzyme. This is responsible for breaking down drugs, hormones, and other chemicals in the body to help retain essential parts and eliminate waste.
This enzyme plays an important role in caffeine metabolism. There are a few types of variations in this gene that affects how your body responds to caffeine.

rs762551 of CYP1A2 Gene and Caffeine Metabolism

The rs762551 SNP is the most discussed variation in the CYP1A2 gene. The AA genotype of this SNP is associated with faster metabolism of caffeine. Individuals with the AA genotype process caffeine quickly and may not experience the negative side-effects of caffeine consumption.

Both the AC genotype and the CC genotype individuals are slow metabolizers. They experience the unpleasant side effects of caffeine consumption, and their bodies process caffeine very slowly.

rs11854147 of CYP1A2 Gene and Caffeine Metabolism

Another SNP that causes an increase/decrease in caffeine metabolism is the rs11854147. Those with the CC genotype metabolize caffeine very rapidly and may not be affected by the negative effects of caffeine consumption.

The CT and the TT genotype individuals are slow metabolizers. They may be prone to the side-effects of caffeine consumption.

Non-genetic Factors Affecting Caffeine Metabolism

Liver diseases - Many studies relate liver diseases to lowered caffeine metabolism. People with liver diseases like liver cirrhosis, hepatitis B, or hepatitis C have lowered plasma clearance rates of caffeine. The more severe your liver disease is the lower the caffeine metabolism rate.
Weight - Caffeine metabolism also depends on body weight. Leaner individuals can increase their calories burnt by 30% when compared to overweight individuals (increase calories burnt by 10%) when they consume caffeine.
Diet - Few types of foods increase or decrease caffeine clearance in the body. Eating such food before you consume caffeine can make changes in caffeine metabolism.
Grapefruit decreases caffeine clearance by about 23%
Broccoli increases caffeine clearance in the plasma
Fruits and vegetables rich in flavonoid affects caffeine metabolism rates
Smoking - Smoking clears caffeine from the body very quickly. Smokers have very high caffeine metabolism rates and can usually handle high amounts of caffeine easily.
Some smokers have almost two times caffeine metabolism rates than non-smokers.
Pregnancy - During the third trimester, the enzyme that helps in caffeine metabolism reduces, increasing the half-life of caffeine. Your body processes caffeine very slowly until delivery, and the metabolism gets better after the child is born.
Medications - Drugs like Ephedrine are recommended to speed up the nervous system. Ephedrine and caffeine can work together and cause extreme jitters, nervousness, and anxiety. Similarly, certain antibiotics and estrogen pills can alter caffeine metabolism and need to be consumed with caution.

Effects of Slow Caffeine Metabolism

For slow caffeine metabolizers, it takes longer for caffeine to pass through the body, and hence the effects of caffeine are more. Such individuals have to restrict their caffeine intake. Here are some of the effects of slow caffeine metabolism.
-Insomnia
-Anxiety
-Digestive troubles
-Upset stomach
-Increased caffeine intake increases the risk of high blood pressure and heart attacks

Effects of Rapid Caffeine Metabolism

For rapid/fast caffeine metabolizers, the caffeine in the body quickly passes through the system. They are hence not affected by the side-effects of caffeine like slow metabolizers. Here are the effects of rapid caffeine metabolism.
-Increased weight loss
-Improved energy levels
-Improved physical performance
-Lowered risks of type II diabetes
-Improved mood and mental state

With time, people can identify the amounts of caffeine that they are comfortable with.

Start with smaller doses and keep a note of how you feel after you consume caffeinated drinks and beverages.’ Self-regulation works well in preventing caffeine overdose.

Recommendations To Improve Caffeine Metabolism

-It is very important you understand how your body processes caffeine. Get your genetic testing done to see if your genes affect the way your body deals with caffeine. If so, increase/decrease your caffeine intake accordingly.
-If your body handles caffeine normally, then do not go beyond the generally recommended levels. Do understand that packaged energy drinks, coffees, and flavored teas all have excess sugar along with caffeine. This is further unhealthy for your body.
-If you are hypersensitive to caffeine, try consuming less than 100 mg of caffeine a day to prevent ruining your metabolic system.
-For those whose bodies process caffeine very slowly, spacing out caffeine intake helps prevent overdoses.
-Staying physically fit, keeping your body hydrated, and eating healthy and fresh produce are all ways to improve your general metabolism. This ensures you can handle caffeine better.

Summary

  1. Caffeine metabolism is the act of how caffeine is processed by the body.
  2. Slow caffeine metabolism and rapid/fast caffeine metabolism are two common ways in which people process caffeine.
  3. Slow metabolizers are more affected by the unpleasant side effects of caffeine as caffeine stays in the body for a longer time.
  4. Fast metabolizers can process caffeine quickly in the body and hence can handle caffeine much better. They are benefitted from caffeine intake.
  5. Certain non-genetic factors like the presence of diseases, pregnancy, consumption of certain types of foods, and habits like smoking can change the way caffeine is metabolized in the body.
  6. Genetically, variations in the CYP1A2 gene can make people more/less sensitive to caffeine.

References

https://archives.drugabuse.gov/blog/post/caffeine-really-addictive
https://pubmed.ncbi.nlm.nih.gov/22302887/
https://medium.com/@viterenergy/3-ways-caffeine-boosts-your-metabolism-d64208b7fbb1
https://www.hsph.harvard.edu/nutritionsource/caffeine/
https://www.caffeineinformer.com/caffeine-metabolism
https://www.coffeeandhealth.org/topic-overview/caffeine-and-metabolism/
https://www.healthline.com/nutrition/caffeine-addiction#TOC_TITLE_HDR_9
https://www.mhc.wa.gov.au/media/1223/caffeine-the-facts-booklet.pdf"

 

Polyunsaturated Fatty Acids - What Are They?

Fats are essential to our bodies and cannot be completely removed from our diet. But too much fat or the wrong type of fat can be harmful to us, especially our hearts. However, there are “good” fats that offer health benefits.

All fats are made up of carbon and hydrogen atoms. The arrangement and the number of hydrogen atoms are what makes them “good” or “bad.” The good fats are called unsaturated fats, while bad fats are called saturated fats. Good fats have fewer hydrogen atoms than bad fats. Another difference that can be noticed is the state (liquid, solid, or gas) at which they are present at room temperature. Good fats are usually present in liquid form at room temperature and harden when chilled.

Polyunsaturated fatty acids or PUFA are a type of good fats. They are mostly found in plant-based oils like vegetable oils or seed oils, fatty fish, and nuts. There are two major classes of PUFA - omega-3 fatty acids and omega-6 fatty acids. Our body cannot produce these fats, and hence we must include them in our diet.

Is There A Relationship Between PUFA And Body Weight?

Omega-3 fatty acid: Animal studies reveal that omega-3 fatty acids (also known as n-3 PUFA) reduce body fat accumulation. Consumption of n-3 PUFA by pregnant and lactating women has a beneficial effect on birth weight and the growth of the infant. In studies that involved adult men and women, no significant gain in body weight was seen due to the consumption of omega-3 fatty acids. On the contrary, the same study observed weight loss in patients who were given fish oil.

Omega-6 fatty acid: For a long time in human history, there was a balance in omega-3 and omega-6 fatty acids consumption. Recently the intake of omega-6 fatty (also known as n-6 PUFA) acids has spiked up. A study showed that high omega-6 fatty acid intake induced weight gain in both animals and humans. The same study concluded that a high intake of n-6 PUFA during pregnancy resulted in fat accumulation across generations.

We need to ensure that we consume omega-3 and omega-6 fatty acids adequately. Neither of them should be ignored completely or over consumed. The ratio of consumption of omega-6 to omega-3 fatty acids must ideally be 1:1 (equal quantities of both).

However, recent studies that analyzed the intake levels revealed that an average American consumed omega fatty acids in the ratio of 17:1. This is extremely unhealthy and may put your health at risk by causing heart diseases and diabetes.

Importance Of Polyunsaturated Fatty Acids

Consuming PUFA instead of saturated or trans fat can have various health benefits:

Studies show that omega-3 and omega-6 fatty acids play a crucial role in the development and functioning of the brain. Any deficiency or imbalance in omega-3 fatty acids during the developmental or adulting phase can significantly affect brain function. Some of the brain disorders that are associated with a lack of omega-3 fatty acids include:

Recommended PUFA Intake

According to the European Scientific Committee on Food (SCF), 2% of daily energy must be derived from omega-6 fatty (n-6 PUFA) acids, and 0.5% of total energy must come from omega-3 fatty acids (n-3 PUFA). This means a typical adult man must consume 6 g of PUFA per day with 5 g of n-6 PUFA and 1 g of n-3 PUFA. Whereas for a woman, the RDA (Recommended Dietary Allowance) is 8 g or PUFA per day - 6.4 g of n-6 PUFA and 1.6 g of n-3 PUFA.

The World Health Organization (WHO) recommends that over 2.5%-9% of the daily energy must be derived from omega-6 PUFA, and over 0.5%-2% of the daily energy must be derived from omega-3 PUFA.

This difference in the recommendation is attributed to the different nutritional goals of the two organizations. While the SCF focuses on correcting PUFA deficiency, the WHO recommends PUFA intake considering its benefits on brain and heart health

Genetics Behind PUFA Intake and Weight Gain

BDNF Gene

The BDNF gene encodes Brain-Derived Neurotrophic Factor, which is a protein found in the brain and spinal cord. This protein plays a role in the development, maturation, and maintenance of cells called neurons.
The BDNF protein is also specifically found in the regions of the brain that control eating, drinking, and body weight.

rs6265
rs6265, also known as Val66Met, is a Single Nucleotide Polymorphism (SNP) in the BDNF gene. A study carried out a detailed examination of eating behavior in persons with different Val66Met types (Val-Val or GG, Val-Met or AG, and Met-Met or AA). It was discovered that women with GG genotype had lower BMI and hip circumference than A allele carriers when on high-PUFA diet.

Effects of Excess PUFA Intake

Over-consumption of PUFA can lead to the following:

  1. Inflammation: Omega-6 fatty acids are pro-inflammatory; that is, they induce inflammation. While inflammation is our body’s natural response to injuries, it is also the root cause of obesity, diabetes, and heart diseases.
  2. Calorie buildup: In our bodies, one gram of fats provides us with nine calories - this is more than the calories provided by the other two macros (carbohydrates and protein) per gram. For this reason, even though PUFAs are healthy, it is important to stay within your calorie needs.
    Apart from health risks, polyunsaturated fatty acids are generally unstable and get spoilt easily.

This is due to their chemical structures (that have double bonds). They react with the oxygen present in the surroundings, and this oxidized form of PUFA is unhealthy. They also smoke easily, and residuals of the smoke have been linked to neurological diseases and cancer in some animal studies.

Effects of PUFA Deficiency

Lack of adequate omega-3 fatty acids can cause:

Lack of omega-6 fatty acids in our diet can have a negative effect on our skin. A study from the University of Illinois found that omega-6 fatty acid is important for our skin. According to this study, a type of omega-6 acid (arachidonic acid) plays a role in the development of dermatitis (an itchy inflammation of the skin). The study observed that the absence of this acid in mice resulted in severe dermatitis, which could be reversed by feeding them with an omega-6-rich diet.

Dietary Sources Of PUFA

Maintaining a healthy ratio of omega-6 fatty acids and omega-3 fatty acids is important.

Plant Sources of Omega-3 Fatty Acids

Animal Sources of Omega-3 Fatty Acids

Plant Sources of Omega-6 Fatty Acids

Animal Sources of Omega-6 Fatty Acids

Summary

  1. Polyunsaturated fats (PUFAs) are a type of healthy fat that includes omega-3 and omega-6 fatty acids.
  2. PUFA is a brain-food that is involved in regulating the development and functioning of the brain.
  3. A region, rs6525 in the BDNF gene regulates your weight on PUFA intake - people with the AA type of rs6525 tend to have a lower BMI on PUDA intake than the AG and GG types.
  4. Some recommended food sources of PUFA include flaxseeds, tofu, and seafood.

References

https://www.health.harvard.edu/staying-healthy/the-truth-about-fats-bad-and-good
https://www.healthline.com/health/all-about-vitamin-e#more-research
https://pubmed.ncbi.nlm.nih.gov/19672626/
https://pubmed.ncbi.nlm.nih.gov/22591885/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808858/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335257/
https://en.wikipedia.org/wiki/Brain-derived_neurotrophic_factor
https://pubmed.ncbi.nlm.nih.gov/16707914/
https://www.ncbi.nlm.nih.gov/pubmed/29610056
https://pubmed.ncbi.nlm.nih.gov/23527564/
https://pubmed.ncbi.nlm.nih.gov/19925718/
https://www.sciencedaily.com/releases/2010/04/100412121022.htm

Magnesium is the fourth most abundant mineral in the body that plays an important role in over 300 enzymatic reactions.
Magnesium is a macromineral - this means our body requires large quantities of magnesium.
About 60% of the magnesium in your body is found in bone, while the rest is in muscles, soft tissues, and fluids, including blood.
The benefits magnesium offers to the body is not limited to one organ. It plays several important roles in the health of your body and brain.
Despite its importance, according to a study, 68% of Americans don’t meet the recommended intake of magnesium.
Magnesium deficiency is associated with a range of health complications, so it is essential to meet your magnesium requirements.

Magnesium Metabolism - Getting Technical

Distribution of Magnesium

About 60% of the magnesium is present in bone, 20% in skeletal muscle, 19% in other soft tissues, and less than 1% in the extracellular fluid (fluid outside the cells in the body). Magnesium is present in very low levels inside the cells except for situations like hypoxia (lack of oxygen) or extended periods of magnesium depletion.

Intestinal Absorption of Magnesium

When magnesium enters the body via dietary sources, about 30-40% of it is absorbed in the intestines. The factors that interfere with the absorption of magnesium haven’t been well-researched yet. According to a study, the parathyroid hormone (PTH) and vitamin D play a role in intestinal absorption.

Magnesium Reabsorption in the Kidney

Regulation of serum magnesium concentration is achieved mainly by control of renal magnesium reabsorption. 95% of the magnesium is reabsorbed in the kidney. The transport and reabsorption in the kidney are influenced by sodium chloride levels.
Magnesium reabsorption is increased in the kidney by parathyroid hormone and inhibited by hypercalcemia (high levels of calcium).
There are also certain genetic factors that influence the transport of magnesium into the kidney.

Importance of Magnesium

Scientists have been studying the effect of magnesium on health. This is what we know so far:

Magnesium Aids Biochemical Reactions

Magnesium is a cofactor (cofactors are chemical compounds that are required to activate enzymes) for more than 300 enzymes.
These enzymes are required for various chemical reactions that are involved in:

  1. Muscle movements
  2. Energy production
  3. Nervous system functioning

    Magnesium Can Improve Brain Functioning

    Magnesium is essential to communicate the signals from the brain to the rest of the body cells. The magnesium present in the receptor cells prevents unwarranted excitation of the brain cells, thereby preventing brain damage. Lowering of brain activity is also necessary to sleep.

    Magnesium Can Lower Blood Pressure

    Some studies suggest that magnesium consumption helps lower blood pressure. However, this effect was noticed only among people with high blood pressure (hypertensive). No effect was found on those with normal blood pressure levels.

    Magnesium Can Improve Psychological Well-being

    Since magnesium coordinates brain signals, it also keeps your mental health in check. Studies suggest a link between lower magnesium levels and depression.
    Some studies also suggest that supplementing with magnesium can help alleviate symptoms of depression.

    Magnesium Can Enhance Exercise Performance

    Magnesium is required to move blood sugar into cells, which gives the energy-boost during exercise. It is also required to remove the lactate from muscles, which causes fatigue.
    A study suggests that magnesium needs rise by 10-20% when exercising than at rest.

    Magnesium Can Help Prevent Migraines

    A study suggests that people with migraines are more likely to be magnesium deficient than others.
    Some studies even encourage magnesium supplements to prevent and treat headaches.

    Magnesium Can Keep Your Heart Healthy

    The contraction and relaxation of cardiac muscles are required for the beating of the heart - the muscles here follow a rhythmic contracting pattern. Calcium is required for muscle contraction, and magnesium is required for muscle relaxation. This helps in maintaining a steady heart rhythm.

    Magnesium Can Maintain Blood Sugar Levels

    The hormone insulin is required for the transport of sugar into the cells. Magnesium is required for insulin regulation. Any deficiency in this mineral can, therefore, increase your risk for type 2 diabetes.

Discovery of Magnesium

The name magnesium comes from Magnesia, a district of Thessaly/Greece where it was first found.
Even before magnesium was discovered as an element, it had already existed in everyone’s daily life.
In 1618, a farmer in England observed that his cows did not drink water from a particular well - he found that water from that well had a bitter taste. However, the same bitter-tasting water seemed to clear up scratches and rashes.
Eventually, the compound that gave the bitter taste was recognized as Epsom salts or magnesium sulfates (MgSO4).
In 1755, a Scottish physician Joseph Black recognized magnesium as a separate element.
However, it was isolated only in the 1800s by a British chemist Sir Humphry Davy. He also suggested the element to be named ‘magnium.’
In 1831, a French chemist Antoine A.B. Bussy discovered a way to isolate magnesium in large quantities. He published his findings in the journal “Mémoire Sur le Radical métallique de la Magnésie.

RDA of Magnesium

For adult men (aged 19 years and older), the RDA of magnesium is 400-420 mg. Adult women need lesser magnesium - 310-320 mg. For pregnant women 18 or older, the requirements are increased to 350–360 mg per day.
The daily upper intake level (highest levels of daily intake that doesn’t have any adverse health effects) for magnesium is 350 mg for anyone over eight years old, including pregnant and breastfeeding women.

How Does Genetics Affect Magnesium Requirements

TRPM6 Gene and Magnesium Requirements

The TRPM6 gene is located on chromosome 9 and encodes transient receptor potential cation channel subfamily M member 6 (TRPM6). This protein forms a channel that allows the flow of magnesium into the cells - it also allows the flow of small amounts of calcium into the cells.
The TRPM6 protein is primarily present in the large intestine, kidneys, and lungs. When the body requires magnesium, this channel allows the absorption in the intestine - when the body has excess magnesium, it filters out the magnesium ions into the kidneys to be excreted through the urine.
rs11144134 of TRPM6 Gene and Magnesium Deficiency Risk
rs11144134 is an SNP in the TRPM6 gene associated with the regulation of serum magnesium levels. According to a study, the T allele of rs11144134 in TRPM6 is associated with lower serum magnesium levels.
But the T allele was also associated with higher bone mineral density in the femoral neck and lumbar spine.

CASR gene and Magnesium Requirements

The CASR gene is located on chromosome 3 and encodes the ‘calcium-sensing receptor’ protein (CaSR). The protein is primarily present in the parathyroid gland, kidneys, and brain. The CASR gene is concerned mainly with maintaining calcium levels, but it also affects magnesium levels in the body. It especially regulates the reabsorption of magnesium in the kidneys.
rs17251221 of CASR Gene and Magnesium Deficiency Risk
rs17251221 is an SNP in the CASR gene associated with the regulation of serum magnesium levels. The presence of the G allele increases the serum magnesium levels.

Other genes like DCDC5, HOXD9, LUZP2, MDS1, MUC1, and SHROOM3 also influence magnesium requirements.

Non-genetic Factors That Influence Magnesium Levels

Hypomagnesemia - Magnesium Deficiency

Symptoms of Hypomagnesemia

Some early signs of magnesium deficiency are:

Untreated magnesium deficiency can lead to more severe symptoms like:

Effects of Excess Magnesium: Hypermagnesemia

The symptoms of hypermagnesemia include:

Dietary Sources of Magnesium

Animal Sources of Magnesium

Plant Sources of Magnesium

Summary

  1. Magnesium is an essential mineral that acts as a cofactor to over 300 enzymatic reactions involved in processes like energy production and nervous system functioning. It also plays a vital role in lowering blood pressure and enhancing your exercise performance.
  2. Magnesium is a macromineral - our body requires it in higher quantities. While adult males require about 400-420 mg of magnesium per day, adult women need to consume 310-320 mg per day.
  3. Even if you meet the RDA, certain conditions like diabetes, hypercalcemia, and alcoholism can prevent the mineral from being absorbed well by the body.
  4. TRMP6 is an important gene that is required for the transport of magnesium. The presence of the T allele in the SNP rs11144134 of this gene is associated with lower serum magnesium levels.
    TheCASR gene, which is well known for its role in calcium metabolism, also influences the reabsorption of magnesium in the kidney - hypercalcemia leads to poor reabsorption of magnesium.
  5. Lower magnesium levels can be identified with symptoms like nausea, fatigue, and loss of appetite. Magnesium toxicity is also harmful and manifests as hypotension, headache, and fatigue.
  6. Since magnesium is an essential mineral, it needs to be consumed through dietary sources. Some magnesium-rich foods include spinach, avocados, fatty fish, pumpkin seeds, soymilk, and lima beans.

Reference:

https://pubmed.ncbi.nlm.nih.gov/29093983/
https://pubmed.ncbi.nlm.nih.gov/19020533/
https://pubmed.ncbi.nlm.nih.gov/25748766/
https://www.ncbi.nlm.nih.gov/pubmed/16542786
https://www.ncbi.nlm.nih.gov/pubmed/17172008
https://www.ncbi.nlm.nih.gov/pubmed/22426836
https://pubmed.ncbi.nlm.nih.gov/6375330/
https://pubmed.ncbi.nlm.nih.gov/9312016/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855626/

 

Identical twins, also known as monozygotic twins, are believed to have identical sets of genes since they are formed from the same fertilized egg. 

Studies on identical twins have been used as a key research tool to tease apart the genetic and environmental contributions to a disease. For example, in the case of identical twins raised apart, if one has diabetes and the other doesn’t, blaming the environmental/lifestyle factors has been the classic approach - owing to their identical genetic material.

However, recent research suggests that this is not entirely true. Even twins developed from the same fertilized egg can have minor differences in their genomes - and these changes can happen during the first week of fetal development. 

The Study

According to a new study published in Nature, the genomes of identical twins can have small genetic differences which may impact their lives significantly. This study was performed by a group at deCODE genetics, an Icelandic biopharmaceutical company. 

The study involved 380 pairs of identical twins, two pairs of triplets, and their closely related families. Next-generation sequencing (NGS) technology was employed to sequence their genomes. NGS is the gold standard of sequencing in recent times that provides the test results within a day.

The results of this study show that, on average, 5.2 mutations differ between the pair of twins, and these differences occur in the early stages of growth.

Despite developing from the same fertilized cell, how do these mutations occur?

To understand that, let’s go over some terms:

Hereditary mutations occur in the gametes (organism’s reproductive cells - the sperm or egg cells). These are passed on from parents to their offspring.

When the sperm and eggs fuse to form the zygote (fertilized egg), these mutations are passed on to each cell of the resulting embryo. Since identical twins are formed from the same fused zygote, in theory, it only makes sense that they carry the same mutations.  

Somatic mutations occur only when the zygote starts to grow - during the first week of zygote development. They commonly occur as a result of errors in the cell division process.

In the case of identical twins, the zygote splits into two during the first week of development. 

While the hereditary mutations are split equally, the somatic mutations may be divided unequally in some cases. This random distribution of the somatic mutations can bring about certain differences between the twins. 

Coming back to the study, in 15% of the twin pairs studied, one twin had significantly more developmental mutations than the other. 

These differences, though very minor, can contribute to significant differences in health outcomes. In fact, they are enough to predispose one twin to developmental disorders like neonatal cancer and keep the other one healthy! 

Summary

  1. Scientists thus far have been conducting twin studies with the belief that they have identical genetic makeup, and thus, any differences in them can only be attributed to environment/lifestyle.
  2. A new study has come to light that challenges this theory. The study identified an average of 5.2 mutations difference between the pair of twins. 
  3. While hereditary mutations occurring in sperms and eggs are passed on equally between the twins, it’s not the case for somatic mutations. They develop during the first week of zygote development as a result of errors in cell division. These mutations are randomly distributed between the split zygote cells.
  4. The minor differences in the mutation distribution has the potential to have significant health impacts. In fact, they could increase the risk of conditions like neonatal cancer on one twin while keeping the other one healthy.

Reference 

  1. https://www.businessinsider.in/science/news/identical-twins-dont-always-have-identical-genes-research-shows-a-new-twist-in-the-nature-versus-nurture-debate/articleshow/80157404.cms
  2. https://www.nature.com/articles/s41588-020-00755-1

Is fat a flavor?

Fat has been classified as a taste as early as 330 BC by Aristotle. However, recent research suggests that fat is associated more with the smooth velvety texture (like in butter) but not with the sense of taste.

To be classified as a ‘ basic taste’ it must meet certain criteria. Some of these include:

  1. Effective stimuli that react with the tongue: For fats, the stimuli arise from the breakdown of fatty acids
  2. Receptors on the tongue that identify the stimuli: A study published in the Journal of Lipid Research by Pepino et al. showed that our tongue indeed contains a protein (CD36) that can detect the presence of fats.
  3. A transmission of the signal from the fat receptors in the tongue to taste-sensing regions in the brain: The molecules generated from fatty acid breakdown activates neurotransmitters like serotonin, which trigger the orosensory (oral senses) perception.
  4. Independent perception of the taste: While sweet and salt tastes can be perceived independently, there’s still a controversy over whether or not ‘fat’ taste can be identified independently.
  5. Physiological effects once the taste receptors are activated: Upon consumption of fat, a commonly seen physiological effect is the increase in the triglyceride levels.

Why Do We Like Fat?

Fat is universally palatable because of its desirable properties in smell and texture.

Smell: There’s a reason why we can ‘taste’ the sizzling bacon even before we dig into it. Fats dissolve odor chemicals and concentrated flavors. Upon heating them, these are released, and when you smell the cooked food, the flavor molecules make their way to your nose and mouth.

Texture: Fatty foods have a special mouthfeel, a special texture. Emulsions made with fat are responsible for the creamy texture of many items like ice cream, peanut butter, and chocolate.

Consumption Of Fats: An Evolutionary Need

Our ancestors likely began acquiring a taste for fat 4 million years ago.

Out of the three macronutrients (carbohydrates, protein, and fats), fats provide the most energy per unit gram.

Proteins and carbohydrates (sugars) provide about 4 calories per gram, while lipids provide 9.4 calories per gram.

Fats also make us feel fuller for a longer time because it is absorbed slowly.

When we feel full, our brain releases ‘feel-good’ hormones that make us content and relaxed. So on hunting days, our ancestors gathered as many fatty foods as possible.

Those who consumed more fats than others survived better in times of food scarcity.

The ‘craving’ for fatty foods, the happiness we derive from it, and the fullness we experience are all a result of evolutionary adaptation.

How Does Genetics Fatty Foods Preference?

A recent study from the Journal of Lipid Research claims that we carry a protein (receptor) in the tongue that is sensitive to fat. People who have more of this ‘fat-perceiving’ protein are more sensitive to fat, and vice versa.

CD36 and Tendency to Prefer Fatty Foods

The CD36 gene is located on chromosome 7. It encodes the Cluster of Differentiation protein, also called the fatty acid translocase protein. It is present on the surfaces of many cells in the body. People with certain forms of the CD36 gene have a lower concentration of the ‘fat-perceiving’ protein and may prefer and consume more high-fat foods than people with the other forms of this gene.

rs1527483

rs1527483 is associated with oral sensitivity to and preference for fat. Individuals who had the C/T or T/T genotypes tend to be less sensitive to fat in the diet than those with the C/C genotype. So, people with the TT type tend to prefer fatty foods more than the others.

rs1761667

According to a study, the G-allele of the rs1761667 SNP was associated with a 11-fold lower threshold for oleic acid than the A allele. Thus, people with the * GG type* had a higher sensitivity to oleic acid and thus consumed less fatty foods.

Health Risks Of High Fat Consumption

Increased Consumption of Certain Types of Fats May Increase The Risk of Diabetes

Fatty acid affects glucose levels by influencing the activity of enzymes like insulin. This can alter cell structure and gene expression. Studies show a positive association between trans fatty acids intake and risk of diabetes. Trans fat is found in animal products such as meat, whole milk, and milk products. Mounting evidence suggests that trans fats increase inflammatory cytokines that are related to the risk of diabetes.

Increased Consumption of Certain Types of Fats  May Increase The Risk of Heart Disease

The potential for a fatty meal to trigger heart attacks has been discussed in the medical literature for many years. According to a study, when people with heart disease consumed a high-fat meal, EKG changes were observed along with reports of chest pain in nearly half of the participants.

Increased Consumption of Certain Types of Fats  May Increase The Risk of Blood Clots

Heart attack, stroke, and pulmonary embolism are examples of diseases caused by blood clots. According to a study, after a meal rich in fatty acids, the volunteers displayed increased activation of blood clotting factors.

Increased Consumption of Certain Types of Fats May Reduce Testosterone Levels

A study investigated the effects of fat-containing meals on plasma sex hormone levels in men. The results revealed reduced concentrations of both total and free testosterone hormone levels.

Consuming Fats The Healthy Way

Studies now show that certain kinds of fats (saturated fats) taken in the right amounts can offer health benefits. Some high-fat foods that are filled with nutrients include:

Animal Sources of Healthy Fats

Plant Sources of Healthy Fats

Summary

  1. Fats are universally palatable owing to the creamy texture it adds to foods like peanut butter.
    Our liking for fats has an evolutionary aspect to it. Fats provide the most energy per unit gram and make us feel fuller. So, our ancestors who consumed more fats had better survival chances than others.
  2. Certain people prefer fatty foods less than others because of their heightened sensitivity to fats. As a result, they may be less likely to consume excess amounts of this nutrient.
  3. CD36 gene influences the sensitivity to fat. Two SNPs in this gene - rs1527483 and rs1761667 are associated with oral sensitivity to and preference for fat. People with certain genetic types tend to consume more fats than others.
  4. Increased fat consumption is linked to health conditions like diabetes, heart diseases, and cancer.
  5. Some “healthy fats,” known as saturated fats, are beneficial to health. Some food sources of saturated fats include avocados, fatty fish, eggs, full-fat yogurt, and chia seeds.

Reference

https://www.researchgate.net/figure/Criteria-for-tastes-to-fulfil-to-be-classified-as-either-basic-tastes-or-within-a-new_fig1_330462664
https://www.sciencedaily.com/releases/2019/02/190205161420.htm
https://en.wikipedia.org/wiki/CD36
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743670/
https://www.ncbi.nlm.nih.gov/pubmed/11689201
https://pubmed.ncbi.nlm.nih.gov/7498102/
https://pubmed.ncbi.nlm.nih.gov/2392062/

What Is Hypertension?

Just like how water exerts pressure on the walls of the pipes when flowing, blood too exerts pressure on the surface blood vessels. The pressure exerted must be constant and of a particular value. A drop or hike in this pressure may likely be a warning of an abnormality.
When the pressure exerted by blood on the walls increases beyond a certain level, it is known as hypertension or high blood pressure. Hypertension is a pretty common health condition, with nearly half the American population expected to be diagnosed with it.

Symptoms Of Hypertension

Most people don't experience any particular symptom until the condition becomes severe. That is why hypertension is rightly known as the "silent killer." Even when people do experience the symptoms, they are almost always associated with other issues.
Some of these warning signals for hypertension include:
- Severe headaches
- Nose bleed
- Difficulty in breathing
- Chest pain
- Extreme tiredness and fatigue
- Sweating and anxiety

What Causes Hypertension?

The causes of hypertension or high blood pressure are still being studied. Some of the well-accepted and scientifically proven causes are smoking, obesity or being overweight, diabetes, having a sedentary lifestyle (one involving very minimal physical activities), and unhealthy eating habits.

What is Riboflavin?

Riboflavin, or vitamin B2, is a water-soluble vitamin. B vitamins are important for making sure the body's cells are functioning properly.
In addition to energy production, riboflavin also acts as an antioxidant and prevents damages by particles called free-radicals. It is involved in the production of folate (vitamin B9), which is crucial for red blood cell formation.
People need to consume vitamin B2 every day because the body can only store small amounts, and supplies go down rapidly.

How Does Riboflavin Affect Blood Pressure Response?

A study published by the American Journal of Clinical Nutrition revealed that one in ten people could significantly lower their blood pressure and, in turn, their risk of heart disease and stroke by increasing their vitamin B2 intake.

Previous studies have found an association between the 677C-->T polymorphism in MTHFR and hypertension. This transition from C to T results in increased homocysteine levels. About 30 to 40 percent of the American population may have a mutation at gene position C677T.

The relationship between riboflavin and hypertension was examined because riboflavin is known to have an important modulating effect on elevated homocysteine.

A study demonstrated that increasing riboflavin status reduced systolic blood pressure by 13 mmHg and diastolic blood pressure by almost 8 mmHg, specifically in patients with the TT genotype.

Another study showed that riboflavin (1.6 mg per day) lowers homocysteine levels in healthy adults with the TT genotype but not in those with CT or CC genotypes.

rs1801133

rs1801133 is an SNP in the MTHFR gene that is commonly studied. It is also known as C677T, Ala222Val, and A222V.
People with the TT type have a lower blood pressure upon riboflavin/vitamin B2 administration than those with the CT or CC type.

Dietary Recommendations

People whose blood pressure responds better to vitamin B2 should consider increasing their riboflavin intake. Vitamin B2 supplements can be taken after consulting with a qualified medical practitioner.

Another way to get vitamin B2 is through dietary sources.

Animal Sources of Vitamin B2

  1. Salmon
  2. Lean beef and pork
  3. Chicken breast
  4. Eggs
  5. Cheese

Plant Sources of Vitamin B2

  1. Fortified tofu
  2. Mushrooms
  3. Spinach
  4. Almonds
  5. Avocados
  6. Grains such as wheat

Summary

  1. Many research studies have clearly outlined the role of the MTHFR gene in regulating blood pressure. A common mutation, C677T, is associated with increased blood pressure or hypertension. C677T also results in increased homocysteine levels.
  2. Observational studies have indicated an inverse relationship between vitamin B2 and homocysteine - the higher the levels of vitamin B2, the lower the homocysteine levels.
  3. The observed relationship between vitamin B2 and homocysteine led researchers to explore the role of riboflavin in regulating blood pressure.
  4. People who have the TT type in rs1801133 of MTHFR gene respond better to vitamin B2 supplementation - riboflavin seemed to have a blood pressure-lowering effect on people with the TT genotype. The same effect was not seen in those with the CC type.
  5. The TT type people can benefit more from vitamin B2 consumption. Some dietary sources of vitamin B2 include salmon, lean meat, eggs, tofu, avocados, and almonds.

Reference

https://www.medicalnewstoday.com/articles/219561
https://www.tandfonline.com/doi/abs/10.1081/CEH-120020391?journalCode=iceh20
https://pubmed.ncbi.nlm.nih.gov/19952781/
https://www.ahajournals.org/doi/full/10.1161/CIRCULATIONAHA.105.580332

© Copyright 2020-30 - Xcode Life - All Rights Reserved
home-icon
Home
learn-icon
Learn
reports-icon
Reports
account-icon
Login
heartcartheart-pulsegiftchevron-down linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram